The residual finiteness of ascending HNN-extensions of certain soluble groups
نویسندگان
چکیده
منابع مشابه
Non-linear ascending HNN extensions of free groups
is called an ascending HNN extension of G (or the mapping torus of the endomorphism φ). In particular, the ascending HNN extensions of free groups of finite rank are simply the groups given by presentations 〈x1, ..., xn, t | txit−1 = wi, i = 1, ..., n〉, where w1, ..., wn are words generating a free subgroup of rank n. In [BS], Borisov and Sapir proved that all ascending HNN extensions of linear...
متن کاملAscending Hnn - Extensions and Properly 3 - Realisable Groups
The most useful constructions in Combinatorial Group Theory are amalgamated free products and HNN-extensions, and they are the two basic examples in the theory of graphs of groups due to Bass and Serre (see [9]). We recall that given a group G and a subgroup H 6 G together with monomorphisms (respectively homomorphisms) ψ, φ : H −→ G, the group determined by the presentation 〈 G, t; t−1ψ(h)t = ...
متن کاملextensions, minimality and idempotents of certain semigroup compactifications
در فصل اول مقدمات و پیش نیازهای لازم برای فصل های بعدی فراهم گردیده است . در فصل دوم مساله توسیع مورد توجه قرار گرفته و ابتدا شرایطی که تحت آن از یک فشرده سازی نیم گروهی خاص یک زیرگروه نرمال بسته یک گروه به یک فشرده سازی متناظر با فشرده سازی اولیه برای گروه رسید مورد بررسی قرار گرفته و سپس ارتیاط بین ساختارهای مختلف روی این دو فشرده سازی از جمله ایده آل های مینیمال چپ و راست و... مورد بررسی قرا...
15 صفحه اولOn the Residual Finiteness of Fundamental Groups of Graphs of Certain Groups
We give a characterization for fundamental groups of graphs of groups amalgamating cyclic edge subgroups to be cyclic subgroup separable if each pair of edge subgroups has a non-trivial intersection. We show that fundamental groups of graphs of abelian groups amalgamating cyclic edge subgroups are cyclic subgroup separable, hence residually finite, if each edge subgroup is isolated in its conta...
متن کاملBounding the Residual Finiteness of Free Groups
We find a lower bound to the size of finite groups detecting a given word in the free group. More precisely we construct a word wn of length n in non-abelian free groups with the property that wn is the identity on all finite quotients of size ∼ n2/3 or less. This improves on a previous result of BouRabee and McReynolds quantifying the lower bound of the residual finiteness of free groups. A gr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Illinois Journal of Mathematics
سال: 2003
ISSN: 0019-2082
DOI: 10.1215/ijm/1258488167